
Decentralized Finance

Instructors: samczsun, Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Practical Smart Contract Security

DeFi MOOC

Introduction

 “How do I learn about smart contract security?”
 Get hacked
 Read blog posts
 Try security challenges
 Talk to an expert

 We’ll be focusing on the latter

DeFi MOOC

Scheduled Programming

 When Safe Code Isn’t
 Uncovering a Four-Year Old Bug
 The 20 Million Dollar CTF
 How To Optimize Responsibly
 Cross-Chain Complications
 Escaping the Dark Forest

DeFi MOOC

Next Up

When Safe Code Isn’t

When Safe Code Isn’t

5

DeFi MOOC

Safety is in the Eye of the Beholder

 What makes something safe?
 Who decides something is safe?
 For a user: safety means protection against user error
 For a programmer: safety means protection against malicious input

 What happens when two people don’t agree on the definition?

DeFi MOOC

Safety is in the Eye of the Beholder

DeFi MOOC

Safety is in the Eye of the Beholder

/// @notice Approve a new owner to take your deed, or revoke approval by
/// setting the zero address. You may `approve` any number of times while
/// the deed is assigned to you, only the most recent approval matters.
/// @dev Throws if `msg.sender` does not own deed `_deedId` or if `_to` ==
/// `msg.sender`.
/// @param _deedId The deed you are granting ownership of
function approve(address _to, uint256 _deedId) external payable;

/// @notice Become owner of a deed for which you are currently approved
/// @dev Throws if `msg.sender` is not approved to become the owner of
/// `deedId` or if `msg.sender` currently owns `_deedId`.
/// @param _deedId The deed that is being transferred
function takeOwnership(uint256 _deedId) external payable;

DeFi MOOC

Safety is in the Eye of the Beholder

DeFi MOOC

Safety is in the Eye of the Beholder

/// @notice Set a new owner for a deed
/// @dev Throws unless `msg.sender` is the current deed owner, the "delegat
e
/// operator" of the current deed owner, or the "approved deed controller"
.
/// Throws if `_to` currently owns the deed. Throws if `_to` is the zero
/// address.
/// @param _to The new owner for the deed
/// @param _deedId The deed to transfer
function transfer(address _to, uint256 _deedId) external payable;

/// @notice Set or reaffirm the "approved deed controller" for a deed
/// @dev The zero address indicates there is no approved deed controller.
/// @dev Throws unless `msg.sender` is the current deed owner, or the
/// "delegate operator" of the current deed owner.
/// @param _approved The new approved deed controller
/// @param _deedId The deed to approve
function approve(address _approved, uint256 _deedId) external payable;

DeFi MOOC

Safety is in the Eye of the Beholder

DeFi MOOC

Safety is in the Eye of the Beholder

/// @notice Transfers the ownership of a deed -- warning the caller is
/// responsible to confirm that the sender is capable of receiving deeds
/// otherwise the deed may become inaccessible!
/// @dev Throws unless `msg.sender` is the current deed owner, the "delegate
/// operator" of the current deed owner, or the "approved deed controller".
/// Throws if `_to` currently owns the deed. Throws if `_to` is the zero
/// address.
/// @param _to The new owner for the deed
/// @param _deedId The deed to transfer
function transfer(address _to, uint256 _deedId) external payable;

/// @notice Transfers the ownership of a given deed from one address to
/// another address
/// @dev Throws unless `msg.sender` is the current deed owner, the "delegate
/// operator" of the current deed owner, or the "approved deed controller".
/// Throws if `_to` currently owns the deed. Throws if `_to` is the zero
/// address. Throws if the deed is not currently owned by _from.
/// @param _from The current owner for the deed
/// @param _to The new owner for the deed
/// @param _deedId The deed to transfer
function transferFrom(address _from, address _to, uint256 _deedId) external payable;

/// @notice Set or reaffirm the "approved deed controller" for a deed
/// @dev The zero address indicates there is no approved deed controller.
/// @dev Throws unless `msg.sender` is the current deed owner, or the
/// "delegate operator" of the current deed owner.
/// @param _approved The new approved deed controller
/// @param _deedId The deed to approve
function approve(address _approved, uint256 _deedId) external payable;

DeFi MOOC

Safety is in the Eye of the Beholder

DeFi MOOC

Safety is in the Eye of the Beholder

/// @notice Transfer ownership of a deed -- THE CALLER IS RESPONSIBLE
/// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING DEEDS OR ELSE
/// THEY MAY BE PERMANENTLY LOST
/// @dev Throws unless `msg.sender` is the current deed owner, an authorized
/// operator, or the approved address for this deed. Throws if `_from` is
/// not the current owner of the deed. Throws if `_to` is the zero address.
/// Throws if `_deedId` is not a valid deed.
/// @param _from The new owner for the deed
/// @param _to The new owner for the deed
/// @param _deedId The deed to transfer
function unsafeTransfer(address _from, address _to, uint256 _deedId) external payable;

/// @notice Transfers the ownership of a given deed from one address to
/// another address
/// @dev Throws unless `msg.sender` is the current deed owner, an authorized
/// operator, or the approved address for this deed. Throws if `_from` is
/// not the current owner of the deed. Throws if `_to` is the zero address.
/// Throws if `_deedId` is not a valid deed. When transfer is complete,
/// this function also calls `onNFTReceived` on `_to` and throws if the return
/// value is not `keccak256("ERC721_ONNFTRECEIVED")`.
/// @param _from The current owner for the deed
/// @param _to The new owner for the deed
/// @param _deedId The deed to transfer
/// @param data Additional data with no specified format, sent in call to `_to`
function transferFrom(address _from, address _to, uint256 _deedId, bytes[] data) external payable;

DeFi MOOC

Safety is in the Eye of the Beholder

DeFi MOOC

Safety is in the Eye of the Beholder

/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT. When transfer is complete, this function
/// checks if `_to` is a smart contract (code size > 0). If so, it calls
/// `onERC721Received` on `_to` and throws if the return value is not
/// `bytes4(keccak256("onERC721Received(address,uint256,bytes)"))`.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
/// @param data Additional data with no specified format, sent in call to `_to`
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data) external payable;

/// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
/// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
/// THEY MAY BE PERMANENTLY LOST
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;

DeFi MOOC

Safety is in the Eye of the Beholder

DeFi MOOC

Safe Transfers

 User safety
 Protects users from typos
 Protects users from sending to the wrong address

 Programmer safety
 Introduces new security risks!

DeFi MOOC

Unsafe External Calls

 Threat model on the blockchain is different
 Traditional programming: function calls are safe because it’s your own

code or a library you trust
 Smart contracts: function calls are unsafe because you might call an

attacker who wants to steal your money

DeFi MOOC

Unsafe External Calls

 During an external call, an attacker has full control
 Interact with your contract again (reentrancy)
 Interact with other contracts

 All external calls to non-trusted contracts may be unsafe!

DeFi MOOC

Unsafe External Calls

 How to determine if an external call is unsafe?
 Consider a hypothetical vulnerability
 If it can be exploited without needing the external call, then the

external call is redundant
 Therefore, the external call must contribute something

 External call occurs during execution of function
 What has the function already checked/changed?
 What will the function check/change?

DeFi MOOC

ENS Name Wrapper

 ERC-1155 token to wrap an ENS domain
 Allows ENS developers to expand abilities of domain owner
 Follow along
 https://github.com/ensdomains/name-wrapper/tree/4726375

DeFi MOOC

ENS Name Wrapper

 Identify the business logic

DeFi MOOC

ENS Name Wrapper

 Figure out the high-level user story
 User wraps a domain, gets ERC1155 token
 User unwraps a token, gets ENS domain back
 User owns a token, can modify domain

DeFi MOOC

ENS Name Wrapper

function wrap(
bytes calldata name,
address wrappedOwner,
uint96 _fuses,
address resolver

) public override {
bytes32 node = _wrap(name, wrappedOwner, _fuses);
address owner = ens.owner(node);

require(
owner == msg.sender ||

isApprovedForAll(owner, msg.sender) ||
ens.isApprovedForAll(owner, msg.sender),

"NameWrapper: Domain is not owned by the sender"
);
ens.setOwner(node, address(this));
if (resolver != address(0)) {

ens.setResolver(node, resolver);
}

}

 Check for unsafe external calls

DeFi MOOC

ENS Name Wrapper

function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data

) private {
if (to.isContract()) {

try
IERC1155Receiver(to).onERC1155Received(

operator,
from,
id,
amount,
data

)
returns (bytes4 response) {

if (
response != IERC1155Receiver(to).onERC1155Received.selector

) {
revert("ERC1155: ERC1155Receiver rejected tokens");

}
} catch Error(string memory reason) {

revert(reason);
} catch {

revert("ERC1155: transfer to non ERC1155Receiver implementer");
}

}
}

 Check for unsafe external calls

DeFi MOOC

ENS Name Wrapper

function wrap(
bytes calldata name,
address wrappedOwner,
uint96 _fuses,
address resolver

) public override {
bytes32 node = _wrap(name, wrappedOwner, _fuses);
address owner = ens.owner(node);

require(
owner == msg.sender ||

isApprovedForAll(owner, msg.sender) ||
ens.isApprovedForAll(owner, msg.sender),

"NameWrapper: Domain is not owned by the sender"
);
ens.setOwner(node, address(this));
if (resolver != address(0)) {

ens.setResolver(node, resolver);
}

}

 Is it exploitable?
function _wrap(

bytes memory name,
address wrappedOwner,
uint96 _fuses

) private returns (bytes32 node) {
(bytes32 labelhash, uint256 offset) = name.readLabel(0);
bytes32 parentNode = name.namehash(offset);

require(
parentNode != ETH_NODE,
"NameWrapper: .eth domains need to use wrapETH2LD()"

);

node = _makeNode(parentNode, labelhash);

_mint(node, name, wrappedOwner, _fuses);
emit NameWrapped(node, name, wrappedOwner, _fuses);

}

DeFi MOOC

ENS Name Wrapper

 What can we do with token ownership?
 Look for functions with onlyTokenOwner modifier
 Unwrap, burn fuses, set subnodes, set resolver/ttl, etc

 Unwrapping sounds pretty cool
 Transfers underlying ENS domain to the owner of the token
 Now we can do whatever we want with the ENS domain
 After we’re done, return from the callback
 We own the ENS domain, so permission check succeeds

DeFi MOOC

Hashmasks

 Limited supply NFT
 Anyone could buy them during the sale, limit 20 per transaction
 Maximum of 16,384 NFTs to be minted
 Follow along
 https://etherscan.io/address/0xc2c747e0f7004f9e8817db2ca4997657a

7746928
 Or just search for “Hashmasks” token

https://etherscan.io/address/0xc2c747e0f7004f9e8817db2ca4997657a7746928

DeFi MOOC

Hashmasks

function mintNFT(uint256 numberOfNfts) public payable {
require(totalSupply() < MAX_NFT_SUPPLY, "Sale has already ended");
require(numberOfNfts > 0, "numberOfNfts cannot be 0");
require(numberOfNfts <= 20, "You may not buy more than 20 NFTs at once");
require(totalSupply().add(numberOfNfts) <= MAX_NFT_SUPPLY, "Exceeds MAX_NFT_SUPPLY");
require(getNFTPrice().mul(numberOfNfts) == msg.value, "Ether value sent is not correct");

for (uint i = 0; i < numberOfNfts; i++) {
uint mintIndex = totalSupply();
if (block.timestamp < REVEAL_TIMESTAMP) {

_mintedBeforeReveal[mintIndex] = true;
}
_safeMint(msg.sender, mintIndex);

}

/**
* Source of randomness. Theoretical miner withhold manipulation possible but should be sufficient in a pragmatic sense
*/
if (startingIndexBlock == 0 && (totalSupply() == MAX_NFT_SUPPLY || block.timestamp >= REVEAL_TIMESTAMP)) {

startingIndexBlock = block.number;
}

}

DeFi MOOC

Hashmasks

function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual {
_mint(to, tokenId);
require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");

}

function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
private returns (bool)

{
if (!to.isContract()) {

return true;
}
bytes memory returndata = to.functionCall(abi.encodeWithSelector(

IERC721Receiver(to).onERC721Received.selector,
_msgSender(),
from,
tokenId,
_data

), "ERC721: transfer to non ERC721Receiver implementer");
bytes4 retval = abi.decode(returndata, (bytes4));
return (retval == _ERC721_RECEIVED);

}

DeFi MOOC

Hashmasks

function mintNFT(uint256 numberOfNfts) public payable {
require(totalSupply() < MAX_NFT_SUPPLY, "Sale has already ended");
require(numberOfNfts > 0, "numberOfNfts cannot be 0");
require(numberOfNfts <= 20, "You may not buy more than 20 NFTs at once");
require(totalSupply().add(numberOfNfts) <= MAX_NFT_SUPPLY, "Exceeds MAX_NFT_SUPPLY");
require(getNFTPrice().mul(numberOfNfts) == msg.value, "Ether value sent is not correct");

for (uint i = 0; i < numberOfNfts; i++) {
uint mintIndex = totalSupply();
if (block.timestamp < REVEAL_TIMESTAMP) {

_mintedBeforeReveal[mintIndex] = true;
}
_safeMint(msg.sender, mintIndex);

}

/**
* Source of randomness. Theoretical miner withhold manipulation possible but should be sufficient in a pragmatic sense
*/
if (startingIndexBlock == 0 && (totalSupply() == MAX_NFT_SUPPLY || block.timestamp >= REVEAL_TIMESTAMP)) {

startingIndexBlock = block.number;
}

}

DeFi MOOC

Unsafe External Calls

 Just because a function is called safe doesn’t mean it’s safe
 Don’t assume what a function does
 If you’re not sure, check!

 Any external call may be unsafe
 Consider positioning of the call and what you can do with it

DeFi MOOC

Next Up

Uncovering a Four Year Old Bug

Uncovering a Four Year Old Bug

35

DeFi MOOC

Standing the Test of Time

 The longer a contract goes unhacked, the more secure it must be
 No low hanging fruit
 Finding a bug requires understanding the logic like the back of your

hand

 How do you ensure you achieve maximum coverage when
reviewing a battle-tested contract?

DeFi MOOC

Searching With A Fine Toothed Comb

 Reduce search space, but how?
 What exactly makes a vulnerability?
 Code remains the same
 User input changes

 Strategy #1: start looking where user input is processed

DeFi MOOC

Searching With A Fine Toothed Comb

 What else makes a vulnerability?
 Program does Bad Thing (send ether, selfdestruct, etc)
 Bad Thing is triggered by special user input (otherwise it’s not a

vulnerability)

 Strategy #2: start looking where bad things can happen

DeFi MOOC

Ambisafe

 ERC20 Platform-as-a-Service
 Every token proxies to the core contract
 A flaw in the core contracts would affect every token on the

platform
 Want to try it yourself? Start here
 https://etherscan.io/address/0x8400d94a5cb0fa0d041a3788e395285d

61c9ee5e
 UniBright token

https://etherscan.io/address/0x8400d94a5cb0fa0d041a3788e395285d61c9ee5e

DeFi MOOC

Ambisafe

DeFi MOOC

Potential Problem #1

/**
* Transfers asset balance from the caller to specified receiver.
*
* @param _to holder address to give to.
* @param _value amount to transfer.
*
* @return success.
*/

function transfer(address _to, uint _value) returns(bool) {
return transferWithReference(_to, _value, '');

}

/**
* Transfers asset balance from the caller to specified receiver adding specified comment.
* Resolves asset implementation contract for the caller and forwards there arguments along with
* the caller address.
*
* @param _to holder address to give to.
* @param _value amount to transfer.
* @param _reference transfer comment to be included in a EToken2's Transfer event.
*
* @return success.
*/

function transferWithReference(address _to, uint _value, string _reference) returns(bool) {
return _getAsset()._performTransferWithReference(_to, _value, _reference, msg.sender);

}

DeFi MOOC

Potential Problem #1

/**
* Returns asset implementation contract for current caller.
*
* @return asset implementation contract.
*/
function _getAsset() internal returns(AssetInterface) {

return AssetInterface(getVersionFor(msg.sender));
}

DeFi MOOC

Potential Problem #1

/**
* Returns asset implementation contract address assigned to sender.
*
* @param _sender sender address.
*
* @return asset implementation contract address.
*/
function getVersionFor(address _sender) constant returns(address) {

return userOptOutVersion[_sender] == 0 ? latestVersion : userOptOutVersion[_sender];
}

DeFi MOOC

Potential Problem #1

/**
* Disagree with proposed upgrade, and stick with current asset implementation
* until further explicit agreement to upgrade.
*
* @return success.
*/
function optOut() returns(bool) {

if (userOptOutVersion[msg.sender] != 0x0) {
return false;

}
userOptOutVersion[msg.sender] = latestVersion;
return true;

}

DeFi MOOC

Potential Problem #2

/**
* Passes execution into virtual function.
*
* Can only be called by assigned asset proxy.
*
* @return success.
* @dev function is final, and must not be overridden.
*/
function _performTransferWithReference(address _to, uint _value, string _reference, address _sender) onlyProxy() returns(bool) {

if (isICAP(_to)) {
return _transferToICAPWithReference(bytes32(_to) << 96, _value, _reference, _sender);

}
return _transferWithReference(_to, _value, _reference, _sender);

}

/**
* Calls back without modifications.
*
* @return success.
* @dev function is virtual, and meant to be overridden.
*/
function _transferWithReference(address _to, uint _value, string _reference, address _sender) internal returns(bool) {

return proxy._forwardTransferFromWithReference(_sender, _to, _value, _reference, _sender);
}

DeFi MOOC

Potential Problem #2

/**
* Only assigned proxy is allowed to call.
*/
modifier onlyProxy() {

if (proxy == msg.sender) {
_;

}
}

DeFi MOOC

Potential Problem #3

/**
* Performs transfer call on the EToken2 by the name of specified sender.
*
* Can only be called by asset implementation contract assigned to sender.
*
* @param _from holder address to take from.
* @param _to holder address to give to.
* @param _value amount to transfer.
* @param _reference transfer comment to be included in a EToken2's Transfer event.
* @param _sender initial caller.
*
* @return success.
*/
function _forwardTransferFromWithReference(address _from, address _to, uint _value, string _reference, address _sender)

onlyImplementationFor(_sender) returns(bool) {
return etoken2.proxyTransferFromWithReference(_from, _to, _value, etoken2Symbol, _reference, _sender);

}

DeFi MOOC

Potential Problem #3

/**
* Only asset implementation contract assigned to sender is allowed to call.
*/
modifier onlyImplementationFor(address _sender) {

if (getVersionFor(_sender) == msg.sender) {
_;

}
}

DeFi MOOC

Potential Problem #4

/**
* Prforms allowance transfer of asset balance between holders wallets.
*
* Can only be called by asset proxy.
*
* @param _from holder address to take from.
* @param _to holder address to give to.
* @param _value amount to transfer.
* @param _symbol asset symbol.
* @param _reference transfer comment to be included in a Transfer event.
* @param _sender allowance transfer initiator address.
*
* @return success.
*/
function proxyTransferFromWithReference(address _from, address _to, uint _value, bytes32 _symbol, string _reference, address _sender)

onlyProxy(_symbol) returns(bool) {
return _transfer(getHolderId(_from), _createHolderId(_to), _value, _symbol, _reference, getHolderId(_sender));

}

DeFi MOOC

Potential Problem #4

/**
* Emits Error if called not by asset proxy.
*/
modifier onlyProxy(bytes32 _symbol) {

if (_isProxy(_symbol)) {
_;

} else {
_error('Only proxy: access denied');

}
}

function _isProxy(bytes32 _symbol) constant internal returns(bool) {
return proxies[_symbol] == msg.sender;

}

DeFi MOOC

Digging Deeper

function _transfer(uint _fromId, uint _toId, uint _value, bytes32 _symbol, string _reference, uint _senderId) internal
checkSigned(_senderId, 1) returns(bool) {
// Should not allow to send to oneself.
if (_fromId == _toId) {

_error('Cannot send to oneself');
return false;

}
// Should have positive value.
if (_value == 0) {

_error('Cannot send 0 value');
return false;

}
// Should have enough balance.
if (_balanceOf(_fromId, _symbol) < _value) {

_error('Insufficient balance');
return false;

}
// Should allow references.
if (bytes(_reference).length > 0 && !isEnabled(sha3(_symbol, Features.TransferWithReference))) {

_error('References feature is disabled');
return false;

}
// [snip]

DeFi MOOC

Digging Deeper

// [snip]

// Should have enough allowance.
if (_fromId != _senderId && _allowance(_fromId, _senderId, _symbol) < _value) {

_error('Not enough allowance');
return false;

}
// Adjust allowance.
if (_fromId != _senderId) {

assets[_symbol].wallets[_fromId].allowance[_senderId] -= _value;
}
_transferDirect(_fromId, _toId, _value, _symbol);
// Internal Out Of Gas/Throw: revert this transaction too;
// Recursive Call: safe, all changes already made.
eventsHistory.emitTransfer(_address(_fromId), _address(_toId), _symbol, _value, _reference);
_proxyTransferEvent(_fromId, _toId, _value, _symbol);
return true;

}

DeFi MOOC

Digging Deeper

/**
* Ask asset Proxy contract to emit ERC20 compliant Transfer event.
*
* @param _fromId holder id to take from.
* @param _toId holder id to give to.
* @param _value amount to transfer.
* @param _symbol asset symbol.
*/
function _proxyTransferEvent(uint _fromId, uint _toId, uint _value, bytes32 _symbol) internal {

if (proxies[_symbol] != 0x0) {
// Internal Out Of Gas/Throw: revert this transaction too;
// Recursive Call: safe, all changes already made.
Proxy(proxies[_symbol]).emitTransfer(_address(_fromId), _address(_toId), _value);

}
}

DeFi MOOC

Digging Deeper

 If we can replace proxies[_symbol], we can emit a fake transfer
event
 However, recall the onlyProxy modifier from earlier
 We can’t just replace the proxy before the transfer

 We need an unsafe external call after
proxyTransferFromWithReference is called

DeFi MOOC

Digging Deeper

 No obvious unsafe external calls in _transfer
 However, there’s a checkSigned modifier

DeFi MOOC

Digging Deeper

modifier checkSigned(uint _holderId, uint _required) {
if (!isCosignerSet(_holderId) || _checkSigned(holders[_holderId].cosigner, _holderId, _required)) {

_;
} else {

_error('Cosigner: access denied');
}

}

function _checkSigned(Cosigner _cosigner, uint _holderId, uint _required) internal returns(bool) {
return _cosigner.consumeOperation(sha3(msg.data, _holderId), _required);

}

function setCosignerAddress(Cosigner _cosigner) checkSigned(_createHolderId(msg.sender), 1) returns(bool) {
if (!_checkSigned(_cosigner, getHolderId(msg.sender), 1)) {

_error('Invalid cosigner');
return false;

}
holders[_createHolderId(msg.sender)].cosigner = _cosigner;
return true;

}

DeFi MOOC

Digging Deeper

 There’s an unsafe external call to a user specified cosigner
 During this call, we can swap out the proxy to the victim token

proxy
 Now we can emit arbitrary transfer events
 However, Ambisafe is a permissioned platform, so low severity

exploit

DeFi MOOC

Digging Deeper

 Time to look at other pieces of business logic
 Notice recovery logic

DeFi MOOC

Digging Deeper

function grantAccess(address _from, address _to) returns(bool) {
if (!isCosignerSet(getHolderId(_from))) {

_error('Cosigner not set');
return false;

}
return _grantAccess(getHolderId(_from), _to);

}

function _grantAccess(uint _fromId, address _to) internal checkSigned(_fromId, 2) returns(bool) {
// Should recover to previously unused address.
if (getHolderId(_to) != 0) {

_error('Should recover to new address');
return false;

}
// We take current holder address because it might not equal _from.
// It is possible to recover from any old holder address, but event should have the current one.
address from = holders[_fromId].addr;
holders[_fromId].addr = _to;
holderIndex[_to] = _fromId;
// Internal Out Of Gas/Throw: revert this transaction too;
// Recursive Call: safe, all changes already made.
eventsHistory.emitRecovery(from, _to, msg.sender);
return true;

}

DeFi MOOC

Digging Deeper

 Seems useless, unless we can somehow know who’s about to
receive tokens for the first time
 As it turns out, we can

DeFi MOOC

Life of a Transaction

 Click send
 Wait a bit
 Mined

DeFi MOOC

Life of a Transaction

 Click send
 Signed locally
 Sent to connected Ethereum node
 Propagated via P2P network (mempool)
 Selected by miner
 Mined
 (Optional) Reorged and reinserted into the mempool

DeFi MOOC

Digging Deeper

 Scan mempool for transactions which result in someone
receiving tokens for the first time
 Frontrun by granting them access to our account ID
 Effectively backdoors their address

 When enough addresses have been backdoored, steal tokens

DeFi MOOC

Uncovering a Four Year Old Bug

 Sometimes, a bug will go unfound for years
 Need to understand the implications of every line of code
 Analyze the contract methodically for maximum coverage

DeFi MOOC

Next Up

The 20 Million Dollar CTF

The 20 Million Dollar CTF

66

DeFi MOOC

Real World Security

 Most bugs aren’t complicated
 Missing only owner modifier
 Private function is public
 Integer overflow

 Sometimes, bugs can get very complicated
 Known as exploit chaining
 Extremely satisfying to pull off

DeFi MOOC

Pickle Finance

 DeFi protocol for yield farming
 Users deposit stablecoins to Pickle Jars and get pTokens

DeFi MOOC

Pickle Finance

 Strategists use deposited tokens to generate returns
 Returns are deposited into the Pickle Jar, increasing the value of

pTokens
 Follow along
 https://github.com/pickle-finance/protocol/tree/4d7ecfa

DeFi MOOC

Strategies

 Controller sends tokens to strategy
 Strategy sends tokens to other protocols
 Other protocols sometimes airdrop tokens back
 COMP, UNI, etc

 There needs to be a way to recover airdropped tokens
 Solution: primary asset (named ‘want’) is locked, controller can retrieve

all other tokens

DeFi MOOC

Strategies

// Controller only function for creating additional rewards from dust
function withdraw(IERC20 _asset) external returns (uint256 balance) {

require(msg.sender == controller, "!controller");
require(want != address(_asset), "want");
balance = _asset.balanceOf(address(this));
_asset.safeTransfer(controller, balance);

}

DeFi MOOC

Bug #1

 What happens if a protocol tokenizes deposits?
 Compound: Deposit DAI, receive cDAI
 Aave: Deposit DAI, receive aDAI

 Not protected from controller withdrawal!
 Severity: low, because we assume controller is not malicious

DeFi MOOC

Controller

 Supports setting governance parameters
 Change fees
 Add new strategies

 Also allows users to swap between two Pickle Jars

DeFi MOOC

Controller

// Function to swap between jars
function swapExactJarForJar(

address _fromJar, // From which Jar
address _toJar, // To which Jar
uint256 _fromJarAmount, // How much jar tokens to swap
uint256 _toJarMinAmount, // How much jar tokens you'd like at a minimum
address payable[] calldata _targets,
bytes[] calldata _data

) external returns (uint256) {
require(_targets.length == _data.length, "!length");

// Only return last response
for (uint256 i = 0; i < _targets.length; i++) {

require(_targets[i] != address(0), "!converter");
require(approvedJarConverters[_targets[i]], "!converter");

}

DeFi MOOC

Bug #2

 If it walks like a duck and quacks like a duck, it might be an evil
contract about to ruin your day
 Controller didn’t verify that jars were legitimate
 Malicious user could specify their own jar
 Severity: low, because the only thing they could do is force a

strategy to deleverage

DeFi MOOC

Proxy Logic

function _execute(address _target, bytes memory _data)
internal
returns (bytes memory response)

{
require(_target != address(0), "!target");

// call contract in current context
assembly {

let succeeded := delegatecall(
sub(gas(), 5000),
_target,
add(_data, 0x20),
mload(_data),
0,
0

)

// snip
}

}

 Controller executed proxy logic using delegatecall

DeFi MOOC

Proxy Logic

 One logic was written for Curve to allow for:
 Burning LP tokens for underlying tokens
 Minting LP tokens using underlying tokens

 Curve’s interface changed slightly, so the proxy had generic
support

DeFi MOOC

Proxy Logic
function add_liquidity(

address curve,
bytes4 curveFunctionSig,
uint256 curvePoolSize,
uint256 curveUnderlyingIndex,
address underlying

) public {
uint256 underlyingAmount = IERC20(underlying).balanceOf(address(this));

// curveFunctionSig should be the abi.encodedFormat of
// add_liquidity(uint256[N_COINS],uint256)
// The reason why its here is because different curve pools
// have a different function signature

uint256[] memory liquidity = new uint256[](curvePoolSize);
liquidity[curveUnderlyingIndex] = underlyingAmount;

bytes memory callData = abi.encodePacked(
curveFunctionSig,
liquidity,
uint256(0)

);

IERC20(underlying).safeApprove(curve, 0);
IERC20(underlying).safeApprove(curve, underlyingAmount);
(bool success,) = curve.call(callData);
require(success, "!success");

}

DeFi MOOC

Bug #3

 Curve proxy logic allows:
 Calling any arbitrary function (curveFunctionSig)
 With one arbitrary parameter, because of the way arrays are ABI-

encoded (underlyingAmount)
 To an arbitrary contract (curve)

 However, underlyingAmount depends on the balance of
underlying token
 Severity: medium, since you can only specify one parameter

DeFi MOOC

Exploit Chaining

 How do we turn three low/med severity vulnerabilities to one
critical severity vulnerability?
 Consider our toolbox:
 Bug #1: Controller can withdraw cTokens from strategies
 Bug #2: Controller doesn’t verify jars
 Bug #3: Curve proxy logic can call any function on any contract with one

attacker-controlled parameter

DeFi MOOC

Exploit Chaining

 Step 1: Create contracts pretending to be Pickle Jars (bug #2)
 Step 2: Execute swapExactJarForJar using Curve logic
 Step 3: Call withdrawAll on strategy to transfer all cDAI to

controller (bug #3, bug #1)
 Step 4: Have controller deposit newly retrieved cDAI to fake jar
 For full exploit, see https://github.com/banteg/evil-

jar/blob/master/reference/samczsun.sol

DeFi MOOC

Input Validation

 Duck typing doesn’t work on the blockchain
 Everything is untrusted until validated against a chain of trust

function logMarketTransferred(IUniverse _universe, address _from, address _to) public returns (bool) {
require(isKnownUniverse(_universe));
IMarket _market = IMarket(msg.sender);
require(_universe.isContainerForMarket(_market));
emit MarketTransferred(address(_universe), address(_market), _from, _to);
return true;

}

DeFi MOOC

Greater Than The Sum Of The Parts

 Complexity breeds insecurity
 Multiple low severity bugs can come together in disastrous ways

DeFi MOOC

Next Up

How To Optimize Responsibly

How To Optimize Responsibly

85

DeFi MOOC

Optimizations

 The cost of unoptimized code stacks up
 Every user calling the function will pay that price, for ever call
 Users don’t like it when they spend $30 to transfer some tokens

 It makes sense to want to optimize
 Heavily used contracts, which will be called extremely often
 Extremely complex contracts, which use millions of gas per call

DeFi MOOC

When All You Have Is A Hammer

 Very tempting to drop down to assembly when optimizing
 No need for all that compiler-generated boilerplate!

 Important to keep security in mind when performing
optimizations
 Compilers will do things that seem odd but address specific edge cases

DeFi MOOC

0x Exchange v2

 Popular orderbook-based DEX
 Makers sign orders and publish them off-chain
 Makers approve exchange contract to spend tokens beforehand

 Takers broadcast signed order as well as their offer
 Exchange contract validates signature then swaps assets

 Exchange contract must not allow fake orders, or taker can lie
about what maker’s terms are
 https://github.com/0xProject/0x-monorepo/tree/965d60/packages

DeFi MOOC

0x Exchange v2

 Supports 7 types of signatures
 2 are always invalid (0x00, 0x01)
 1 is “pre-signed” (0x06)
 2 are signed by users off-chain (0x02, 0x03)
 2 are approved by wallets on-chain (0x04, 0x05)

 Wallet signatures must make external call to smart wallet
 To avoid reentrancy, 0x made use of the staticcall instruction

DeFi MOOC

Signature Validation
function isValidWalletSignature(

bytes32 hash,
address walletAddress,
bytes signature

)
internal
view
returns (bool isValid)

{
bytes memory calldata = abi.encodeWithSelector(

IWallet(walletAddress).isValidSignature.selector,
hash,
signature

);
assembly {

let cdStart := add(calldata, 32)
let success := staticcall(

gas, // forward all gas
walletAddress, // address of Wallet contract
cdStart, // pointer to start of input
mload(calldata), // length of input
cdStart, // write output over input
32 // output size is 32 bytes

)

DeFi MOOC

Signature Validation

switch success
case 0 {

// Revert with `Error("WALLET_ERROR")`
mstore(0, 0x08c379a000)
mstore(32, 0x0000002000)
mstore(64, 0x0000000c57414c4c45545f4552524f5200000000000000000000000000000000)
mstore(96, 0)
revert(0, 100)

}
case 1 {

// Signature is valid if call did not revert and returned true
isValid := mload(cdStart)

}
}
return isValid;

}

DeFi MOOC

Memory in Ethereum

 EVM has no concept of pages or malloc
 When you try to read or write outside of your memory size, your

memory is expanded
 You pay a gas cost proportional to the amount of newly allocated

memory

 One common optimization is to reuse memory

DeFi MOOC

CALL Opcode Semantics

 Today, read return data with the RETURNDATACOPY opcode
 Allows for copying dynamic amounts of returndata

 When the EVM was first designed, only static return sizes were
allowed
 The CALL opcodes all require:
 Target contract address
 Call data memory address
 Call data length
 Return output memory address
 Return data length

DeFi MOOC

CALL Opcode Semantics

 What happens if contract returns more than specified length?
 All memory up to length is overwritten with return data
 Extra data is truncated

 What happens if contract returns less than specified length?
 All data returned is written to memory
 Extra memory is left as-is

DeFi MOOC

CALL Opcode Semantics

 What happens if the contract reverts?
 CALL opcode pushes 0 onto stack

 What happens if the contract doesn’t revert?
 CALL opcode pushes 1 onto stack

 What happens if the contract has no code in the first place?
 CALL pretends like it has a single STOP opcode
 Push 1 onto stack
 No return data

DeFi MOOC

Signature Validation
function isValidWalletSignature(

bytes32 hash,
address walletAddress,
bytes signature

)
internal
view
returns (bool isValid)

{
bytes memory calldata = abi.encodeWithSelector(

IWallet(walletAddress).isValidSignature.selector,
hash,
signature

);
assembly {

let cdStart := add(calldata, 32)
let success := staticcall(

gas, // forward all gas
walletAddress, // address of Wallet contract
cdStart, // pointer to start of input
mload(calldata), // length of input
cdStart, // write output over input
32 // output size is 32 bytes

)

DeFi MOOC

Signature Validation

switch success
case 0 {

// Revert with `Error("WALLET_ERROR")`
mstore(0, 0x08c379a000)
mstore(32, 0x0000002000)
mstore(64, 0x0000000c57414c4c45545f4552524f5200000000000000000000000000000000)
mstore(96, 0)
revert(0, 100)

}
case 1 {

// Signature is valid if call did not revert and returned true
isValid := mload(cdStart)

}
}
return isValid;

}

DeFi MOOC

Signature Validation

 Set signature to 0x04 (wallet type), automatically valid for all
EOAs
 Compiler (if it supported STATICCALL) would have prevented this
 Check address has code
 Check there’s enough return data

DeFi MOOC

ENS Registry

 ENS (Ethereum Name Service), like DNS but on Ethereum
 Supports .eth (and other TLDs)

 Registry stores owner, resolver, TTL, for each ENS entry
 Low-level component, heavily optimized for gas, written in LLL
 https://github.com/ensdomains/ens/blob/master/contracts/ENS.lll

DeFi MOOC

ENS Registry

;; Struct: Record
(def 'resolver 0x00) ; address
(def 'owner 0x20) ; address
(def 'ttl 0x40) ; uint64

DeFi MOOC

ENS Registry

;; --
;; @notice Checks that the caller is the node owner.
;; @param node Check owner of this node.
(def 'only-node-owner (node)
(when (!= (caller) (get-owner node))
(jump invalid-location)))

;; --
;; @notice Retrieves owner from node record.
;; @param node Get owner of this node.
(def 'get-owner (node)
(sload (+ node owner)))

DeFi MOOC

ENS Registry
;; --

;; @notice Transfers ownership of a node to a new address. May only be
;; called by the current owner of the node.
;; @dev Signature: setOwner(bytes32,address)
;; @param node The node to transfer ownership of.
;; @param new-owner The address of the new owner.

(def 'node (calldataload 0x04))
(def 'new-owner (calldataload 0x24))

(function set-node-owner
(seq (only-node-owner node)

;; Transfer ownership by storing passed-in address.
(set-owner node new-owner)

;; Emit an event about the transfer.
;; Transfer(bytes32 indexed node, address owner);
(mstore call-result new-owner)
(log2 call-result 32

(sha3 0x00 (lit 0x00 "Transfer(bytes32,address)")) node)

;; Nothing to return.
(stop)))

DeFi MOOC

ENS Registry

namehash([]) = 0x00
namehash([label, …]) = keccak256(namehash(…), keccak256(label))

DeFi MOOC

Storage Layout

| +0x00 | resolver |

| +0x20 | owner |

| +0x40 | ttl |

DeFi MOOC

Storage Layout

| +0x00 | resolver |

| +0x20 | owner | +0x00 | resolver |

| +0x40 | ttl | +0x20 | owner |

| +0x40 | ttl |

DeFi MOOC

Storage Layout

 Setting the resolver for one node sets the owner for the one
before
 Setting the ttl for one node sets the owner for the one after
 Breaks the invariant wherein changing the value of one entry

should not change the value of another
 Allows users to set backdoors by claiming ownership of nodes

going backwards, then activate backdoor by claiming ownership
of nodes going forwards

DeFi MOOC

Storage Layout

 Compiler would have addressed this
 Mappings are implemented by computing the storage slot as

keccak256(key . slot)
 Changing the value of one value can’t affect the value of another

(without breaking keccak256)

DeFi MOOC

Optimizations

 Hand-rolling optimizations is fine, but know the EVM first
 Compilers do things for a reason

DeFi MOOC

Next Up

Cross-Chain Complications

Cross-Chain Complications

110

DeFi MOOC

More Chains, More Problems

 Securing individual chains is hard
 Securing interactions between chains is harder
 Especially if the two chains can’t natively communicate with each other

DeFi MOOC

Atomic Loans

 Decentralized loan platform built on BTC and ETH
 Lock BTC, get stablecoins
 Complex state machine due to lack of native cross-chain

communication
 Agent is provided to automate loan origination

DeFi MOOC

Atomic Loans

 Step 1: Alice (borrower) and Bob (lender) agree to terms
 Step 2: Alice and Bob initialize loan on ETH and commit secrets
 A1: Allows Bob to withdraw collateral if loan expires
 B1: Allows Alice to reclaim collateral after repaying loan
 A2/B2: For liquidations, unimportant to us

 Step 3: Bob locks loan on ETH by sending to smart contract
 Step 4: Alice locks collateral on BTC by sending to P2SH address
 Script allows funds to be spent if
 Alice signs the tx and provides B1
 Bob signs the tx, provides A1, and liquidation period is over

DeFi MOOC

Atomic Loans

 Step 5: Bob confirms BTC was locked and unlocks loan
 Step 6: Alice reveals A1 in order to withdraw loan
 Step 7: Alice repays loan
 Step 8: Bob reveals B1 in order to claim payment

DeFi MOOC

Cross-Chain Bugs

 What are some goals?
 Stealing locked loans on ETH as a third party
 Stealing locked collateral on BTC as a third party
 Taking a loan on ETH without locking BTC
 Liquidating collateral on BTC without providing loan

DeFi MOOC

Cross-Chain Bugs

 Focus on third option, take a loan without locking BTC
 Never lock BTC in the first place
 Lock but somehow obtain B1 secret

DeFi MOOC

BTC Transactions

 BTC tracks balances using transaction outputs
 Each transaction spends some inputs and generates some

outputs

DeFi MOOC

BTC Transactions

const refundableBalance = await loan.collateralClient().chain.getBalance([collateralRefundableP2SHAddress])
const seizableBalance = await loan.collateralClient().chain.getBalance([collateralSeizableP2SHAddress])

const refundableUnspent = await loan.collateralClient().getMethod('getUnspentTransactions')([collateralRefundableP2SHAddress])
const seizableUnspent = await loan.collateralClient().getMethod('getUnspentTransactions')([collateralSeizableP2SHAddress])

const collateralRequirementsMet = (refundableBalance.toNumber() >= refundableCollateralAmount &&
seizableBalance.toNumber() >= seizableCollateralAmount)

const refundableConfirmationRequirementsMet = refundableUnspent.length === 0 ? false : refundableUnspent[0].confirmations > 0
const seizableConfirmationRequirementsMet = seizableUnspent.length === 0 ? false : seizableUnspent[0].confirmations > 0

if (collateralRequirementsMet && refundableConfirmationRequirementsMet && seizableConfirmationRequirementsMet) {
await agenda.now('approve-loan', { loanModelId: loan.id })

res.json({ message: 'Approving Loan', status: 0 })
} else {
res.json({ message: 'Collateral has not be locked', status: 2 })

}

DeFi MOOC

Secret Extraction

 How can we get B1 secret from agent?
 Look through agent code for when B1 is published
 When loan repayment is accepted
 When loan is cancelled

 Don’t care about first, implies we just repaid the loan
 What about loan cancellation?

DeFi MOOC

Secret Extraction

// Cancel loan if not withdrawn within 22 hours after approveExpiration
if ((currentTime > (parseInt(approveExpiration) + 79200)) && !withdrawn) {

log('info', `Check Loan Statuses and Update Job | ${principal} Loan #${loanId} was not withdrawn within 22 hours | Cancelling loan`)
await agenda.schedule(getInterval('ACTION_INTERVAL'), 'accept-or-cancel-loan', { loanModelId: loan.id })

}

DeFi MOOC

Secret Extraction

/**
* @notice Borrower withdraws loan
* @param loan The Id of the Loan
* @param secretA1 Secret A1 provided by the borrower
*/
function withdraw(bytes32 loan, bytes32 secretA1) external {

require(!off(loan), "Loans.withdraw: Loan cannot be inactive");
require(bools[loan].funded == true, "Loans.withdraw: Loan must be funded");
require(bools[loan].approved == true, "Loans.withdraw: Loan must be approved");
require(bools[loan].withdrawn == false, "Loans.withdraw: Loan principal has already been withdrawn");
require(sha256(abi.encodePacked(secretA1)) == secretHashes[loan].secretHashA1, "Loans.withdraw: Secret does not match");
bools[loan].withdrawn = true;
require(token.transfer(loans[loan].borrower, principal(loan)), "Loans.withdraw: Failed to transfer tokens");

secretHashes[loan].withdrawSecret = secretA1;
if (address(col.onDemandSpv()) != address(0)) {col.requestSpv(loan);}

emit Withdraw(loan, secretA1);
}

DeFi MOOC

Cross-Chain Complications

 Every chain has its own nuances that aren’t immediately obvious
 Bitcoin: 0-conf transactions
 Ethereum: frontrunning

 Building a cross-chain state machine is hard
 Ensure well-defined transitions

DeFi MOOC

Next Up

Escaping The Dark Forest

Escaping The Dark Forest

124

DeFi MOOC

Escaping The Dark Forest

 Unofficial sequel to Dan Robinson’s and Georgios
Konstantopoulos’s Ethereum Is A Dark Forest
 Follow along
 https://etherscan.io/address/0x8b24f5c764ab741bc8a2426505bda458

c30df010
 Funds at the time: ~25,000 ETH, ~9,600,000 USD

DeFi MOOC

Finding The Bug

DeFi MOOC

Finding The Bug

function _transferETH(
address payable recipient,
uint256 amount,
string memory errorMessage

) internal {
require(_hasSufficientBalance(amount), errorMessage);
(bool success,) = recipient.call{value: amount}("");
require(success, "transferring Ether failed");
emit LogTransferETH(address(this), recipient, amount);

}

DeFi MOOC

Finding The Bug
function issueNewBonds(uint256 bondGroupID)

public
override
payable
returns (uint256)

{
BondGroup storage bondGroup = _bondGroupList[bondGroupID];
bytes32[] storage bondIDs = bondGroup.bondIDs;
require(

_getBlockTimestampSec() < bondGroup.maturity,
"the maturity has already expired"

);

uint256 fee = msg.value.mul(2).div(1002);

// [snip]

_transferETH(payable(LIEN_TOKEN_ADDRESS), fee);

emit LogIssueNewBonds(bondGroupID, msg.sender, amount);

return amount;
}

DeFi MOOC

Finding The Bug
function _distributeETH2BondTokenContract(

uint256 bondGroupID,
uint256 oracleHintID

) internal {
// [snip]

for (uint256 i = 0; i < bondGroup.bondIDs.length; i++) {
bytes32 bondID = bondGroup.bondIDs[i];
BondToken bondTokenContract = _bonds[bondID].contractInstance;
require(

address(bondTokenContract) != address(0),
"the bond is not registered"

);

// [snip]

uint256 totalSupply = bondTokenContract.totalSupply();
bool expiredFlag = bondTokenContract.expire(n, d);

if (expiredFlag) {
uint256 payment = totalSupply.mul(10**(18 - 8)).mul(n).div(d);
_transferETH(

address(),
payment, bondTokenContract
"system error: BondMaker's balance is less than payment"

);
}

}
}

DeFi MOOC

Finding The Bug
/**
* @notice redeems ETH from the total set of bonds in the bondGroupID before maturity date.
*/

function reverseBondToETH(uint256 bondGroupID, uint256 amountE8)
public
override
returns (bool)

{
BondGroup storage bondGroup = _bondGroupList[bondGroupID];
bytes32[] storage bondIDs = bondGroup.bondIDs;
require(

_getBlockTimestampSec() < bondGroup.maturity,
"the maturity has already expired"

);
bytes32 bondID;
for (

uint256 bondFnMapIndex = 0;
bondFnMapIndex < bondIDs.length;
bondFnMapIndex++

) {
bondID = bondIDs[bondFnMapIndex];
_burnBond(bondID, msg.sender, amountE8);

}

_transferETH(
msg.sender,
amountE8.mul(10**10),
"system error: insufficient Ether balance"

);

emit LogReverseBondToETH(bondGroupID, msg.sender, amountE8.mul(10**10));

return true;
}

DeFi MOOC

Finding The Bug
/**
* @notice Collect bondIDs that regenerate the original ETH, and group them as a bond group.
* Any bond is described as a set of linear functions(i.e. polyline),
* so we can easily check if the set of bondIDs are well-formed by looking at all the end
* points of the lines.
*/
function registerNewBondGroup(bytes32[] memory bondIDs, uint256 maturity)

public
override
returns (uint256 bondGroupID)

{
_assertBondGroup(bondIDs, maturity);

// Get and increment next bond group ID
bondGroupID = nextBondGroupID;
nextBondGroupID = nextBondGroupID.add(1);

_bondGroupList[bondGroupID] = BondGroup(bondIDs, maturity);

emit LogNewBondGroup(bondGroupID);

return bondGroupID;
}

DeFi MOOC

Finding The Bug
function _assertBondGroup(bytes32[] memory bondIDs, uint256 maturity)

internal
view

{
uint256 numOfBreakPoints = 0;
for (uint256 i = 0; i < bondIDs.length; i++) {

BondInfo storage bond = _bonds[bondIDs[i]];
require(

bond.maturity == maturity,
"the maturity of the bonds must be same"

);
LineSegment[] storage polyline = _registeredFnMap[bond.fnMapID];
numOfBreakPoints = numOfBreakPoints.add(polyline.length);

}

uint256 nextBreakPointIndex = 0;
uint64[] memory rateBreakPoints = new uint64[](numOfBreakPoints);
for (uint256 i = 0; i < bondIDs.length; i++) {

// [snip]
}

for (uint256 k = 0; k < rateBreakPoints.length; k++) {
// [snip]

}
}

DeFi MOOC

Reporting The Bug

 Whose contract is it?
 No comments about owner

 Google contract address
 No results

 Google contract name
 Find blog post: https://medium.com/lien-finance/lien-version-2-

overview-8ecd0bdeb51e

DeFi MOOC

Reporting The Bug

 Team is anonymous
 Unsure if admin on Telegram is core dev or not

 Notice audit reports by ConsenSys and CertiK
 Try contacting ConsenSys

DeFi MOOC

Reporting The Bug

 Brief Alex Wade on the situation
 Discuss possible solutions
 Publish announcement asking users to withdraw
 Use the exploit to rescue funds

 Both solutions are bad

DeFi MOOC

Ethereum Is A Dark Forest

 Advanced frontrunning bots monitor the mempool and look for
opportunities
 Handles generic transactions

 Trying to exploit the bug would likely result in a bot frontrunning
us

DeFi MOOC

Reporting The Bug

 Contact Scott Bigelow, collaborated on frontrunners in the past
 Then contact Tina, who had been reaching out to miners
 Lien still hadn’t responded, so contact CertiK too
 Introduced to Georgios Delkos

DeFi MOOC

Identity Verification

 How do you verify someone is who they say they are?
 Just ask them? Must trust their word

 If verifying professional identity, send a code to work email
 Possible to spoof email sender, but harder to intercept
 Proves that they own the domain and inbox
 Optionally, ask for a reply over email too

 If verifying contract ownership, get a signature from deployer
 Make sure to sign a message including all relevant information
 Proves they deployed the contract (even if they’re not the current

owner)

DeFi MOOC

Reporting The Bug

 Finally, got in touch with anonymous developer
 Identity verification! Alex and Georgios validate the anonymous

developer has access to the email used during the audit

 Proposed solutions to Lien
 Urge people to withdraw
 Try the exploit ourselves
 Contact a mining pool and do a private transaction

 Lien agreed to go with option #3

DeFi MOOC

Fixing The Bug

 Tina contacted SparkPool’s co-founder, Shaoping, who offered to
help
 More identity verification!

 Fortunately, SparkPool had been in the middle of a private relay
service already
 SparkPool finished development in 2 hours
 Meanwhile, Scott and I were working on the rescue payload

DeFi MOOC

Liabilities

 What happens if a rescue goes wrong? Who’s at fault?
 Solution: Have Lien perform the withdrawal

 What sort of tax obligations does temporarily receiving 10 million
USD create?
 Solution: Send tokens directly to Lien

DeFi MOOC

Escaping The Dark Forest

DeFi MOOC

Escaping The Dark Forest

DeFi MOOC

Escaping The Dark Forest

DeFi MOOC

Escaping The Dark Forest

DeFi MOOC

Escaping The Dark Forest

DeFi MOOC

Escaping The Dark Forest

 Lots to consider when rescuing 7+ figure funds
 Identity verification
 Liabilities
 Taxes?

 Private relays for everyone

DeFi MOOC

Next Up

Conclusions

Conclusions

149

DeFi MOOC

Conclusions

 DeFi security is hard, but we’re learning from past mistakes
 Don’t trust names of methods
 How to methodically review code
 Exploit chaining
 EVM quirks
 Cross-chain state machines

 Finding the bug is only the first step
 Coordination with project
 Identity verification
 Taxes/liability

DeFi MOOC

Conclusions

 All this sound interesting? Exciting? Feel free to reach out
 Email: sam@samczsun.com
 Telegram: @samczsun

mailto:sam@samczsun.com

	Decentralized Finance
	Introduction
	Scheduled Programming
	Next Up
	When Safe Code Isn’t
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safety is in the Eye of the Beholder
	Safe Transfers
	Unsafe External Calls
	Unsafe External Calls
	Unsafe External Calls
	ENS Name Wrapper
	ENS Name Wrapper
	ENS Name Wrapper
	ENS Name Wrapper
	ENS Name Wrapper
	ENS Name Wrapper
	ENS Name Wrapper
	Hashmasks
	Hashmasks
	Hashmasks
	Hashmasks
	Unsafe External Calls
	Next Up
	Uncovering a Four Year Old Bug
	Standing the Test of Time
	Searching With A Fine Toothed Comb
	Searching With A Fine Toothed Comb
	Ambisafe
	Ambisafe
	Potential Problem #1
	Potential Problem #1
	Potential Problem #1
	Potential Problem #1
	Potential Problem #2
	Potential Problem #2
	Potential Problem #3
	Potential Problem #3
	Potential Problem #4
	Potential Problem #4
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Digging Deeper
	Life of a Transaction
	Life of a Transaction
	Digging Deeper
	Uncovering a Four Year Old Bug
	Next Up
	The 20 Million Dollar CTF
	Real World Security
	Pickle Finance
	Pickle Finance
	Strategies
	Strategies
	Bug #1
	Controller
	Controller
	Bug #2
	Proxy Logic
	Proxy Logic
	Proxy Logic
	Bug #3
	Exploit Chaining
	Exploit Chaining
	Input Validation
	Greater Than The Sum Of The Parts
	Next Up
	How To Optimize Responsibly
	Optimizations
	When All You Have Is A Hammer
	0x Exchange v2
	0x Exchange v2
	Signature Validation
	Signature Validation
	Memory in Ethereum
	CALL Opcode Semantics
	CALL Opcode Semantics
	CALL Opcode Semantics
	Signature Validation
	Signature Validation
	Signature Validation
	ENS Registry
	ENS Registry
	ENS Registry
	ENS Registry
	ENS Registry
	Storage Layout
	Storage Layout
	Storage Layout
	Storage Layout
	Optimizations
	Next Up
	Cross-Chain Complications
	More Chains, More Problems
	Atomic Loans
	Atomic Loans
	Atomic Loans
	Cross-Chain Bugs
	Cross-Chain Bugs
	BTC Transactions
	BTC Transactions
	Secret Extraction
	Secret Extraction
	Secret Extraction
	Cross-Chain Complications
	Next Up
	Escaping The Dark Forest
	Escaping The Dark Forest
	Finding The Bug
	Finding The Bug
	Finding The Bug
	Finding The Bug
	Finding The Bug
	Finding The Bug
	Finding The Bug
	Reporting The Bug
	Reporting The Bug
	Reporting The Bug
	Ethereum Is A Dark Forest
	Reporting The Bug
	Identity Verification
	Reporting The Bug
	Fixing The Bug
	Liabilities
	Escaping The Dark Forest
	Escaping The Dark Forest
	Escaping The Dark Forest
	Escaping The Dark Forest
	Escaping The Dark Forest
	Escaping The Dark Forest
	Next Up
	Conclusions
	Conclusions
	Conclusions

